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Generalized Linear Models  
 The type of predictive model one uses depends on a 

number of issues; one is the type of response. 
 Measured values such as quantity of a protein, age, 

weight usually can be handled in an ordinary linear 
regression model, possibly after a log transformation. 

 Patient survival, which may be censored, calls for a 
different method (survival analysis, Cox regression). 
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 If the response is binary, then can we use logistic 
regression models 

 If the response is a count, we can use Poisson 
regression 

 If the count has a higher variance than is consistent 
with the Poisson, we can use a negative binomial or 
quasipoisson 

 Other forms of response can generate other types of 
generalized linear models 

 One type of count data occurs in proteomics: number 
of unique peptide fragments mapping to the given 
protein. 

 A similar count is the number of reads in RNA-Seq 
mapping to a particular gene. 
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Generalized Linear Models 
 We need a linear predictor of the same form as in linear 

regression βx 
 In theory, such a linear predictor can generate any type of 

number as a prediction, positive, negative, or zero 
 We choose a suitable distribution for the type of data we 

are predicting (normal for any number, gamma for positive 
numbers, binomial for binary responses, Poisson for 
counts) 

 We create a link function which maps the mean of the 
distribution onto the set of all possible linear prediction 
results, which is the whole real line (-∞, ∞). 

 The inverse of the link function takes the linear predictor 
to the actual prediction 
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 Ordinary linear regression has identity link (no 
transformation by the link function) and uses the 
normal distribution 

 If one is predicting an inherently positive quantity, one 
may want to use the log link since ex is always positive. 

 An alternative to using a generalized linear model with 
an log link, is to transform the data using the log or 
maybe glog. This is a device that works well with 
measurement data and may be usable in other cases 
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R glm() Families 
Family Links 

gaussian identity, log, inverse 

binomial logit, probit, cauchit, log, cloglog 

Gamma inverse, identity, log 

inverse.gaussian 1/mu^2, inverse, identity, log 

poisson log, identity, sqrt 

quasi identity, logit, probit, cloglog, inverse, log, 1/mu^2 and sqrt 

quasibinomial logit, probit, identity, cloglog, inverse, log, 1/mu^2 and sqrt 

quasipoisson log, identity, logit, probit, cloglog, inverse, 1/mu^2 and sqrt 
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R glm() Link Functions 
Links Domain Range 

identity (−∞, ∞) (−∞, ∞) 

log (0, ∞) (−∞, ∞) 

inverse (0, ∞) (0, ∞) 

logit (0, 1) (−∞, ∞) 

probit (0, 1) (−∞, ∞) 

cloglog (0, 1) (−∞, ∞) 

1/mu^2 (0, ∞) (0, ∞) 

sqrt (0, ∞) (0, ∞) 

( )X gη β µ µ= = =

1( ) ( )X g pη β µ −= = = Φ

( ) log( log(1 ))X g pη β µ= = = − −

2( ) 1/X gη β µ µ= = =

( )X gη β µ µ= = =

( ) log( )X gη β µ µ= = =

( ) 1/X gη β µ µ= = =

( )( ) log / (1 )X p pgη β µ= = −=
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∞ 0 
Possible Means 

-∞ ∞ 0 

Predictors 

Link 
= Log 
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∞ 0 
Possible Means 

-∞ ∞ 0 

Predictors 

Inverse 
Link 
= ex 
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Logistic Regression 
 Suppose we are trying to predict a binary variable 

(patient has ovarian cancer or not, patient is 
responding to therapy or not) 

 We can describe this by a 0/1 variable in which the 
value 1 is used for one response (patient has ovarian 
cancer) and 0 for the other (patient does not have 
ovarian cancer 

 We can then try to predict this response 
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 For a given patient, a prediction can be thought of as a 
kind of probability that the patient does have ovarian 
cancer. As such, the prediction should be between 0 
and 1. Thus ordinary linear regression is not suitable 

 The logit transform takes a number which can be 
anything, positive or negative, and produces a number 
between 0 and 1. Thus the logit link is useful for binary 
data 
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1 0 
Possible Means 

-∞ ∞ 0 

Predictors 

Link 
= Logit 
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1 0 
Possible Means 

-∞ ∞ 0 

Predictors 

Inverse 
Link 
= inverse 
logit 
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Analyzing Tabular Data with Logistic 
Regression 
 Response is hypertensive y/n 
 Predictors are smoking (y/n), obesity (y/n), snoring 

(y/n) [coded as 0/1 for Stata, R does not care] 
 How well can these 3 factors explain/predict the 

presence of hypertension? 
 Which are important? 
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no.yes <- c("No","Yes") 
smoking <- gl(2,1,8,no.yes) 
obesity <- gl(2,2,8,no.yes) 
snoring <- gl(2,4,8,no.yes) 
n.tot <- c(60,17,8,2,187,85,51,23) 
n.hyp <- c(5,2,1,0,35,13,15,8) 
hyp <- data.frame(smoking,obesity,snoring,n.tot,n.hyp,n.hyp/n.tot) 
print(hyp) 
 
  smoking obesity snoring n.tot n.hyp n.hyp.n.tot 
1      No      No      No    60     5  0.08333333 
2     Yes      No      No    17     2  0.11764706 
3      No     Yes      No     8     1  0.12500000 
4     Yes     Yes      No     2     0  0.00000000 
5      No      No     Yes   187    35  0.18716578 
6     Yes      No     Yes    85    13  0.15294118 
7      No     Yes     Yes    51    15  0.29411765 
8     Yes     Yes     Yes    23     8  0.34782609 
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Specifying Logistic Regressions in R 

 For each ‘cell’, we need to specify the diseased and 
normals, which will be what we try to fit. 

 This can be specified either as a matrix with one 
column consisting of the number of diseased persons, 
and the other the number of normals (not the total). 

 Or we can specify the proportions as a response, with 
weights equal to the sample size 
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hyp.tbl <- cbind(n.hyp, n.tot-n.hyp) 
print(hyp.tbl) 
glm.hyp1 <- glm(hyp.tbl ~ smoking+obesity+snoring,family=binomial("logit")) 
glm.hyp2 <- glm(hyp.tbl ~ smoking+obesity+snoring,binomial) 
prop.hyp <- n.hyp/n.tot 
glm.hyp2 <- glm(prop.hyp ~ smoking+obesity+snoring,binomial,weights=n.tot) 
 
 n.hyp     
[1,]     5  55 
[2,]     2  15 
[3,]     1   7 
[4,]     0   2 
[5,]    35 152 
[6,]    13  72 
[7,]    15  36 
[8,]     8  15 
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> summary(glm.hyp1) 
 
Call: 
glm(formula = hyp.tbl ~ smoking + obesity + snoring, family = binomial("logit")) 
 
Deviance Residuals:  
       1         2         3         4         5         6         7         8   
-0.04344   0.54145  -0.25476  -0.80051   0.19759  -0.46602  -0.21262   0.56231   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -2.37766    0.38018  -6.254    4e-10 *** 
smokingYes  -0.06777    0.27812  -0.244   0.8075     
obesityYes   0.69531    0.28509   2.439   0.0147 *   
snoringYes   0.87194    0.39757   2.193   0.0283 *   
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 14.1259  on 7  degrees of freedom 
Residual deviance:  1.6184  on 4  degrees of freedom 
AIC: 34.537 
 
Number of Fisher Scoring iterations: 4 
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> anova(glm.hyp1,test="Chisq") 
Analysis of Deviance Table 
 
Model: binomial, link: logit 
 
Response: hyp.tbl 
 
Terms added sequentially (first to last) 
 
 
        Df Deviance Resid. Df Resid. Dev P(>|Chi|) 
NULL                        7    14.1259           
smoking  1   0.0022         6    14.1237    0.9627 
obesity  1   6.8274         5     7.2963    0.0090 
snoring  1   5.6779         4     1.6184    0.0172 
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> predict(glm.hyp1) 
         1          2          3          4          5          6          7  
-2.3776615 -2.4454364 -1.6823519 -1.7501268 -1.5057221 -1.5734970 -0.8104126  
         8  
-0.8781874  
> predict(glm.hyp1,type="response") 
         1          2          3          4          5          6          7  
0.08489206 0.07977292 0.15678429 0.14803121 0.18157364 0.17171843 0.30780259  
         8  
0.29355353  
> rbind(predict(glm.hyp1,type="response"),prop.hyp) 
                  1          2         3         4         5         6         7 
         0.08489206 0.07977292 0.1567843 0.1480312 0.1815736 0.1717184 0.3078026 
prop.hyp 0.08333333 0.11764706 0.1250000 0.0000000 0.1871658 0.1529412 0.2941176 
                 8 
         0.2935535 
prop.hyp 0.3478261 
> rbind(predict(glm.hyp1,type="response")*n.tot,n.hyp) 
             1        2        3         4        5        6        7        8 
      5.093524 1.356140 1.254274 0.2960624 33.95427 14.59607 15.69793 6.751731 
n.hyp 5.000000 2.000000 1.000000 0.0000000 35.00000 13.00000 15.00000 8.000000 
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Logistic Regression with Raw Data 
 Sometimes the data are in the form of individual cases 

with the covariates and resulting binary classification 
variable as a 0/1 variable or two-level factor. It is 
convenient not to have to tabulate 

 Also, if any of the covariates is continuous, 
categorization is not possible without discretizing the 
variable 
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juul(ISwR) R Documentation  
 
Juul's IGF data 
Description 
The juul data frame has 1339 rows and 6 columns. It contains a reference sample  
of the distribution of insulin-like growth factor (IGF-1), one observation per  
subject in various ages with the bulk of the data collected in connection with  
school physical examinations.  
 
Format 
This data frame contains the following columns:  
 
age:   a numeric vector (years).  
menarche: a numeric vector. Has menarche occurred (code 1: no, 2: yes)?  
sex:   a numeric vector (1: boy, 2: girl).  
igf1:   a numeric vector. Insulin-like growth factor ($μ$g/l).  
tanner:   a numeric vector. Codes 1–5: Stages of puberty a.m. Tanner.  
testvol:  a numeric vector. Testicular volume (ml).  
 
Source 
Original data.  
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> library(ISwR) 
> data(juul) 
> juul1 <- subset(juul,age > 8 & age < 20 & complete.cases(menarche)) 
> summary(juul1) 
      age           menarche          sex         igf1           tanner       
 Min.   : 8.03   Min.   :1.000   Min.   :2   Min.   : 95.0   Min.   : 1.000   
 1st Qu.:10.62   1st Qu.:1.000   1st Qu.:2   1st Qu.:280.5   1st Qu.: 1.000   
 Median :13.17   Median :2.000   Median :2   Median :409.0   Median : 4.000   
 Mean   :13.44   Mean   :1.507   Mean   :2   Mean   :414.1   Mean   : 3.307   
 3rd Qu.:16.48   3rd Qu.:2.000   3rd Qu.:2   3rd Qu.:514.0   3rd Qu.: 5.000   
 Max.   :19.75   Max.   :2.000   Max.   :2   Max.   :914.0   Max.   : 5.000   
                                             NA's   :108.0   NA's   :83.000   
    testvol    
 Min.   : NA   
 1st Qu.: NA   
 Median : NA   
 Mean   :NaN   
 3rd Qu.: NA   
 Max.   : NA   
 NA's   :519   
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> juul1$menarche <- factor(juul1$menarche,labels=c("No","Yes")) 
> juul1$tanner <- factor(juul1$tanner) 
> attach(juul1) 
> summary(glm(menarche ~ age,binomial)) 
 
Call: 
glm(formula = menarche ~ age, family = binomial) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-2.32759  -0.18998   0.01253   0.12132   2.45922   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -20.0132     2.0284  -9.867   <2e-16 *** 
age           1.5173     0.1544   9.829   <2e-16 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 719.39  on 518  degrees of freedom 
Residual deviance: 200.66  on 517  degrees of freedom 
AIC: 204.66 
 
Number of Fisher Scoring iterations: 7 
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> summary(glm(menarche ~ age+tanner,binomial)) 
 
Call: 
glm(formula = menarche ~ age + tanner, family = binomial) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-2.56180  -0.12461   0.02475   0.08055   2.86120   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -13.7758     2.7630  -4.986 6.17e-07 *** 
age           0.8603     0.2311   3.723 0.000197 *** 
tanner2      -0.5211     1.4846  -0.351 0.725609     
tanner3       0.8264     1.2377   0.668 0.504313     
tanner4       2.5645     1.2172   2.107 0.035132 *   
tanner5       5.1897     1.4140   3.670 0.000242 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 604.2  on 435  degrees of freedom 
Residual deviance: 106.6  on 430  degrees of freedom 
AIC: 118.6 
 
Number of Fisher Scoring iterations: 8 
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> anova(glm(menarche ~ age+tanner,binomial),test="Chisq") 
Analysis of Deviance Table 
 
Model: binomial, link: logit 
 
Response: menarche 
 
Terms added sequentially (first to last) 
 
 
        Df Deviance Resid. Df Resid. Dev P(>|Chi|) 
NULL                      435     604.19           
age      1   442.31       434     161.88 3.396e-98 
tanner   4    55.28       430     106.60 2.835e-11 
 
> drop1(glm(menarche ~ age+tanner,binomial),test="Chisq") 
Single term deletions 
 
Model: 
menarche ~ age + tanner 
       Df Deviance     AIC     LRT   Pr(Chi)     
<none>     106.599 118.599                       
age     1  124.500 134.500  17.901 2.327e-05 *** 
tanner  4  161.881 165.881  55.282 2.835e-11 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  

February 5, 2014 BST 226 Statistical Methods for Bioinformatics 30 



Overdispersion 
 A binomial random variable X with n observations and 

probability of success p has mean np and variance  
np(1 − p). 

 Could the variance be systematically larger? It could if 
p varies from trial to trial. 

 The worst case is if X = n with probability p and X = 0 
with probability 1 − p. Then the mean is still np but the  
variance is now n2p(1 − p). 

 If we have overdispersion, we can use the 
quasibinomial family, which estimates the variance 
rather than assumes that it is np(1 − p). 
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Poisson Distributions 
 The Poisson distribution can be used to model 

unbounded count data, 0, 1, 2, 3, …  
 An example would be the number of cases of sepsis in 

each hospital in a city in a given month. 
 The Poisson distribution has a single parameter λ, 

which is the mean of the distribution and also the 
variance. The standard deviation is 
 λ
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Poisson Regression 
 If the mean λ of the Poisson distribution depends on 

variables x1, x2, …, xp  then we can use a generalized linear 
model with Poisson distribution and log link. 

 We have that log(λ) is a linear function of x1, x2, …, xp. 
 This works pretty much like logistic regression, and is used 

for data in which the count has no specific upper limit 
(number of cases of lung cancer at a hospital) whereas 
logistic regression would be used when the count is the 
number out of a total (number of emergency room 
admissions positive for C. dificile out of the known total of 
admissions).  

 With overdispersion, we can use the quasipoisson family. 
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eba1977                  package:ISwR                  R Documentation 
 
Lung cancer incidence in four Danish cities 1968-1971 
 
This data set contains counts of incident lung cancer cases and population size in four neighbouring 

Danish cities by age group. 
 
A data frame with 24 observations on the following 4 variables: 
 
     ‘city’ a factor with levels ‘Fredericia’, ‘Horsens’, ‘Kolding’, and ‘Vejle’. 
     ‘age’ a factor with levels ‘40-54’, ‘55-59’, ‘60-64’, ‘65-69’, ‘70-74’, and ‘75+’. 
     ‘pop’ a numeric vector, number of inhabitants. 
     ‘cases’ a numeric vector, number of lung cancer cases. 
 
Details: 
 
     These data were “at the center of public interest in Denmark in 
     1974”, according to Erling Andersen's paper. The city of 
     Fredericia has a substantial petrochemical industry in the harbour 
     area. 
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> library(ISwR) 
> data(eba1977) 
help(eba1977) 
> dim(eba1977) 
[1] 24  4 
> eba1977 
         city   age  pop cases 
1  Fredericia 40-54 3059    11 
2     Horsens 40-54 2879    13 
3     Kolding 40-54 3142     4 
4       Vejle 40-54 2520     5 
5  Fredericia 55-59  800    11 
.......... 
20      Vejle 70-74  539     8 
21 Fredericia   75+  605    10 
22    Horsens   75+  782     2 
23    Kolding   75+  659    12 
24      Vejle   75+  619     7 
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> attach(eba1977) 
> eba.glm <- glm(cases ~ 
city+age+offset(log(pop)),family=poisson) 

> summary(eba.glm) 
 
Call: 
glm(formula = cases ~ city + age + offset(log(pop)), 
family = poisson) 

 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-2.63573  -0.67296  -0.03436   0.37258   1.85267  
 
 
Having offset(x) in a formula is like having x in the 
formula except the coefficient is fixed to 1. Having 
offset(log(pop)) in the formula, with the log link, makes 
the parameter lambda proportional to the population. A 
similar effect would come from analyzing the ratio of 
cases to population, but then we would not have count 
data. 
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Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -5.6321     0.2003 -28.125  < 2e-16 *** 
cityHorsens  -0.3301     0.1815  -1.818   0.0690 .   
cityKolding  -0.3715     0.1878  -1.978   0.0479 *   
cityVejle    -0.2723     0.1879  -1.450   0.1472     
age55-59      1.1010     0.2483   4.434 9.23e-06 *** 
age60-64      1.5186     0.2316   6.556 5.53e-11 *** 
age65-69      1.7677     0.2294   7.704 1.31e-14 *** 
age70-74      1.8569     0.2353   7.891 3.00e-15 *** 
age75+        1.4197     0.2503   5.672 1.41e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 129.908  on 23  degrees of freedom 
Residual deviance:  23.447  on 15  degrees of freedom 
AIC: 137.84 
 
Number of Fisher Scoring iterations: 5 
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Goodness of Fit 
 If the model fits well, the residual deviance should be in 

the neighborhood of the df of the residual deviance. 
 23.447 on 15 df 
 Under the null hypothesis that the model fits, and if the 

smallest fitted value is > 5, then the null distribution is chi-
squared 

> min(fitted(eba.glm)) 
[1] 6.731286 
> pchisq(deviance(eba.glm), 
          df.residual(eba.glm),lower=F) 
[1] 0.07509017 
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> drop1(eba.glm,test="Chisq") 
Single term deletions 
 
Model: 
cases ~ city + age + offset(log(pop)) 
       Df Deviance    AIC     LRT Pr(Chi)     
<none>      23.447 137.84                     
city    3   28.307 136.69   4.859  0.1824     
age     5  126.515 230.90 103.068  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1  

 
 
The test of the city effect would not be correct if we 
had individual patient data, since it then would be a 
characteristic of a group of patients, not of a patient. 
This would require a hierarchical model as in glmer() or 
Proc Mixed 
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> cf <- coef(summary(eba.glm)) 
> cf 
              Estimate Std. Error    z value      Pr(>|z|) 
(Intercept) -5.6320645  0.2002545 -28.124529 4.911333e-174 
cityHorsens -0.3300600  0.1815033  -1.818479  6.899094e-02 
cityKolding -0.3715462  0.1878063  -1.978348  4.788946e-02 
cityVejle   -0.2723177  0.1878534  -1.449629  1.471620e-01 
age55-59     1.1010140  0.2482858   4.434463  9.230223e-06 
age60-64     1.5186123  0.2316376   6.555985  5.527587e-11 
age65-69     1.7677062  0.2294395   7.704455  1.314030e-14 
age70-74     1.8568633  0.2353230   7.890701  3.004950e-15 
age75+       1.4196534  0.2502707   5.672472  1.407514e-08 
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> est <- cf[,1] 
> se <- cf[,2] 
> rr <- exp(cbind(est, est-se*qnorm(.975), 
                     est+se*qnorm(.975))) 

colnames(rr) <- c("RateRatio","LowerCL","UpperCL") 
> rr 
              RateRatio     LowerCL      UpperCL 
(Intercept) 0.003581174 0.002418625  0.005302521 
cityHorsens 0.718880610 0.503687146  1.026012546 
cityKolding 0.689667168 0.477285856  0.996553318 
cityVejle   0.761612264 0.527026991  1.100613918 
age55-59    3.007213795 1.848515376  4.892215085 
age60-64    4.565884929 2.899710957  7.189442499 
age65-69    5.857402508 3.735990951  9.183417356 
age70-74    6.403619032 4.037552548 10.156236043 
age75+      4.135686847 2.532309969  6.754270176 
 
These are rates per 4 person years. 
The confidence intervals use an asymptotic  
approximation. A more accurate method in some  
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> exp(cbind(coef(eba.glm),confint(eba.glm))) 
Waiting for profiling to be done... 
                              2.5 %       97.5 % 
(Intercept) 0.003581174 0.002373629  0.005212346 
cityHorsens 0.718880610 0.502694733  1.025912422 
cityKolding 0.689667168 0.475568043  0.995045687 
cityVejle   0.761612264 0.525131867  1.098950868 
age55-59    3.007213795 1.842951851  4.901008833 
age60-64    4.565884929 2.907180919  7.236296972 
age65-69    5.857402508 3.748295295  9.248885425 
age70-74    6.403619032 4.043044796 10.211923083 
age75+      4.135686847 2.522891909  6.762422572 
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bcmort                  package:ISwR                   R 
Documentation 

 
Breast cancer mortality 
 
     Danish study on the effect of screening for breast  
     cancer. 
 
Format: 
 
     A data frame with 24 observations on 4 variables. 
 
     ‘age’ a factor with levels ‘50-54’, ‘55-59’, 
          ‘60-64’, ‘65-69’, ‘70-74’, and ‘75-79’ 
      
     ‘cohort’ a factor with levels ‘Study gr.’,  
          ‘Nat.ctr.’, ‘Hist.ctr.’, and ‘Hist.nat.ctr.’. 
 
     ‘bc.deaths’ numeric, number of breast cancer deaths. 
 
     ‘p.yr’ a numeric vector, person-years under study. 
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Details: 
 
     Four cohorts were collected. The "study group" 
consists of the population of women in the appropriate 
age range in Copenhagen and Frederiksberg after the 
introduction of routine mammography screening. The 
"national control group" consisted of the population in 
the parts of Denmark in which routine mammography 
screening was not available. These two groups were both 
collected in the years 1991-2001. The "historical 
control group" and the "historical national control 
group" are similar cohorts from 10 years earlier (1981-
1991), before the introduction of screening in 
Copenhagen and Frederiksberg. The study group comprises 
the entire population, not just those accepting the 
invitation to be screened.  

 
A.H. Olsen et al. (2005), Breast cancer mortality in 
Copenhagen after introduction of mammography screening. 
British Medical Journal, 330: 220-222.  
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